DETERMINATION OF RADAR TARGET SCATTERING CENTER
TRANSFER FUNCTIONS FROM MEASURED DATA

Q. Li", E.J. Rothwell, K.M. Chen, D.P. Nyquist,
J. Ross and R. Bebermeyer
Department of Electrical Engineering
Michigan State University
E. Lansing, MI 48824

1. Introduction

Development of successful radar target discrimination schemes using
ultrawideband signatures hinges on an accurate understanding of the scattering
behavior of complicated radar targets. In the time domain, a target response
consists of an early-time component, which is localized and specular in nature,
followed by a late-time natural mode series describing the global characteristics
of the target. The temporal shape of specular responses depends on the localized
geometry of the target; the sharp edge of an aircraft wing will produce a
different event than the curved edge of a fuselage. This paper describes a simple
technique for determining the localized transfer functions of a target from its
measured time or frequency-domain response.

II. Theory

If secondary interactions are neglected, the early-time response of a radar

target to a transmitted pulse p(t) can be approximated as a series of pulse
responses

s@® = p@O*Y h,® =Y £,O 1)

where h,(t) is the impulse response of the m® scattering center. Altes [1] suggests

that the impulse response of the m™ scattering center located at temporal position
T,, can be expanded as

h® =Y a 8"¢-T,) 2)
n=-ew
Here a negative value of n refers to the n® integral of the delta function while a
positive value of n refers to the n™ derivative of the delta function. This expansion
is equivalent to representing the transfer function of the m™ scattering center as

a polynomial. Using the time-shifting and differentiation theorems for Fourier
transforms gives

H (o) = Fh,@) = Y a_(o) 3



Unfortunately, it is not possible to measure H (w) since only a finite portion of
the spectrum can be covered in any measurement. Thus, it is necessary to deal

with the band-limited pulse response of the scattering centers. LetF, (w) = F{f, (0}
represent the band-limited transfer function of the m® scattering center. Then

F (o) = ¥} a,G,.(®) )
where

G,(@) = P(@)e "= (jw)" S

- and-P(w) is-the-spectrum of p(t). Thus, the pulse response of the m™® scattering
center can be written as

f m(t) = E amngmn(t) (6)
where g () = F{G_(w)}.

When the response of a target is measured in the frequency domain, the
scattering-center transfer functions (4) all overlap and cannot be separated.
However, if the frequency band is wide enough, the pulse responses (6) found by
windowing and inverse transforming the frequency domain target response will
be temporally separated. Thus, computation of the scattering center transfer
functions must be done in the time domain, by calculating the unknown
amplitudes a_,,. These then give the transfer functions through (4).

The procedure for computing the amplitudes a,, uses repetitive least-
squares, as follows. The measured frequency-domain scattered field response of
a particular target is windowed with the function P(w) (to reduce unwanted
truncation-induced oscillations) and inverse transformed into the time domain
using the FFT. Then the function f,(t) calculated from (6) is fit to the response
with the amplitudes a_, determined to minimize

€(Tm) = E [S(ti) - E amgm(t,')]z (7)
i R

for a certain value of T,,. The proper T, which describes the temporal position
of the scattering center with the largest energy is found by searching the entire
early-time range. After the scattering center pulse response has been determined,
a signal s,(t) is formed by subtracting off f,(t) (providing a signal with one less
scattering center). Then a waveform f,(t) is fit to s,(t), determining the puise
response of the scattering center with the second highest energy. This response
is then subtracted off to form a signal s,(t) and the process is repeated until all of
the dominant scattering center pulse responses have been determined. To ensure
reasonable accuracy it is important to calculate g,,(t) carefully. For the results
reported in this section, the quantity G,,(w) is computed for a certain value of T,
and then g_.(t) is found using the inverse FFT.



III. Example

As an example, Figure 1 shows the nose-on pulse response of a 1:72 scale
model B-52 aircraft measured at 601 points in the frequency band 1 to 7 GHz,
windowed using a gaussian-modulated cosine function centered at 4 GHz (giving
an equivalent pulse width of about 0.4 ns), and inverse transformed with a 4096
point FFT. Note that due to the relatively narrow bandwidth, the scattering
center pulse responses overlap somewhat, and it is anticipated that the accuracy
of the resulting scattering center transfer functions will not be optimum. Also
shown in Figure 1 are the temporal positions of nine scattering centers found
using the least square technique outlined above. The transfer functions of these

scattering centers have been found using n=-2,-1,0,1,2 in the expansion (2). The
height of the circles represent the relative energy in each transfer function. Thus,
the dominant specular reflection comes from the first engine mount (which
coincides with the front of the second engine) and the next largest reflection
comes from the second engine mount. Note that each specular reflection matches
quite well with a physical feature on the target, including the trailing edges of the
wing and rear wing. It is interesting to see that in terms of total energy, the
reflection from the nose of the aircraft is quite smail.

Once the scattering center pulse responses have been determined, the
overall early-time pulse response of the target can be reconstructed using (1).
This is shown in Figure 1 as the dotted line. Obviously, the reconstructed

response matches extremely well, except in the latter part of the waveform where
there is a small late-time component.

The scattering center pulse responses for the first three dominant scattering
centers, calculated using (6), are shown in Figure 2. Each response has a slightly
different shape, with the largest response dominated by the first integral of the
equivalent pulse. This can be seen in Figure 3, which shows the scattering center
transfer functions found using (4). Note that to get the true transfer function, the
spectrum of the pulse P(w) has been divided out of (5). The first scattering center
is dominated by a downward slope, indicating a 1/w or integral response. The
next two responses are relatively flat, indicating a primarily impulsive response.
Similar results are seen in Figure 4 and Figure 5, which show the pulse responses
and transfer functions of the next three largest scattering centers. Note that the
nose response is quite close to a pure impulse over the measurement band.
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Figure 1. Nose-on response of B-52 aircraft.
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Figure 2. Pulse response of 1st, 2nd and
3rd brightest specular points on B-52.
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Figure 4. Pulse response of 4th, 5th and
6th brightest specular points on B-52.
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Figure 3. Transfer function of 1st, 2nd and

3rd brightest specular points on B-52.
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Figure 5. Transfer functions of 4th, 5th and
6th brightest specular points on B-52.




